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Roughly 9.6 million people die from cancer every year

1in every 6 deaths is due to cancer



Cells and DNA
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Immunotherapy for treating cancer

Our immune system has the ability to find and destroy cancer cells.

But cancer cells can sometimes hide from the immune system and avoid
being destroyed. Cancer cells may also stop the immune system from working
properly.

Immunotherapy helps to strengthen or restore the immune system’s natural

ability to fight cancer (with very little damage to patient's body)



Cancer resistance to Immunotherapy

Cancer Cells in a tumor Apply Immunotherapy Cancer Cells divide to form

i Cancer Cells not killed new tumor

Cancer Cells killed by
immunotherapy



A promising approach..
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How to get gene expression information from cells

Single Cell RNA Sequencing (scRNA-seq)
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Slice of tissue [solate individual cells Extract RNA

Extracts all genetic data in the cell (i.e. 20,000 genes)

Problem: we don't know what part of the original tissue the genes came from



How to get spatial information from cells

Image Based Spatial Transcriptomics fuorescent chemical probes
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Identifies spatial location of genes, but due to chemical limits only a smaller number

of genes can be profiled

Problem: we can only recover a small number of genes and their locations (~500) 0



Goal: Get both spatial and genetic information from cells
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Project Goal

Our project aims to develop a probabilistic machine learning model to map the

image-based spatial transcriptomics data to scRNA sequencing data.

e This will allow us to infer the spatial information of cells based on the genetic

information of the RNA molecules within each cell.
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Data Collection

- Image-Based Spatial
Transcriptomics and
Single-Cell RNA Sequencing

+ High dimensional data
(tens of thousands of
features)
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How can we analyze the data using machine learning?

scRNA seq data
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Another high dimensional dataset

Data is very complex and very different, hard to find direct mapping
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Can we first transform the data into a more similar
space, and still preserve the important features?

scRNA seq data Spatial transcriptomics data
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Latent space representation

Shared features:
1. Light or pinkish color
2.  Relatively round shape

3.  Well defined nucleus
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Understanding Latent spaces

A Latent Space is an abstract space that encodes a meaningful compressed internal representation of
externally observed high dimensional events

High Multidimensional Space - Lower Dimensional Representation

Lots of specific features which are useless for Key features which encapsulate fundamental
representation observations 17



Unders

Inpu‘t Space,

tanding Latent spaces

-

ppa— Shared features:

1. Light or pinkish color

_ / 2. Relatively round shape
T, : 3. Well defined nucleus
B p . & Shared features:

1. Long body

2. Many branches

How do we obtain a good latent space for the dataset?
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Variational Autoencoders

Probabilistic machine learning method that

encodes and decodes a latent space
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e learns the “important features’ that are worth preserving

Decoder

=

Decoder

Reconstructed
Data

e learns how to “interpret’ coded information to reconstruct the original

information
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Variational Autoencoders (VAE)
D PR S B
2 parts: encoder and decoder (neural networks)

Encoder Decoder

Encoder Network

High_Dim Reconstructed
Data Data

e Transforms high-dim data into low-dim data

Encode Decode

Decoder Network

e Reconstruct high-dim data from low dim data

input hidden output

Minimize information loss of reconstructed data
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scRNA seq data Reconstructed

Minimize Information Loss

SCRNA seq data
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Benchmarking VAE Methods

e Many VAE algorithms in the field

e We will analyze them with the same dataset and pick the one with best

performance (lowest loss)

e Iterative Process: continuously tune model structure and parameters
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Variational Graph Autoencoder (VGAE)
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Similar to Variational Autoencoder (VAE)

Additionally allows spatial information (x, y) as input

Encodes sequencing data and adjacency matrix (spatial graph)

together to a latent space
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: Generate ML Relationshi
Data Collection —>» —> P
Models Between Models
A J
Image-Based Spatial Variational Autoencoder
Transcriptomics and and Variational Graph
Single-Cell RNA Autoencoder
Sequencing
- High dimensional data - Analyze high-dim data

- Learn low-dim features
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Connecting between the Latent Spaces
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Theories for Bridging Two Latent Spaces

e Many theories developed for non-bioinformatics fields
e Potential Methods:
o Domain Transfer
o Latent Mapping
o Latent Translation
e Evaluate and apply those implementations on our latent

spaces

26



Relationship
Between Models

- J

Mapping Function
between two Latent
Spaces

- Understand what the
features represent

+ Minimize reconstruction
loss
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Validation

Important to verify our model on new, unseen data.

e VAE Model

o Accuracy of encoding and decoding of scRNA-seq data (reduce information Loss)
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Validation

Important to verify our model on new, unseen data.

e VAE Model
o Accuracy of encoding and decoding of scRNA-seq data (reduce information Loss)
e VGAE Model

o Accuracy of encoding and decoding of spatial transcriptomics data (reduce information

loss)
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NEW
spatial
transcriptomics
data

Minimize information loss
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Validation

Important to verify our model on new, unseen data.

e VAE Model
o Accuracy of encoding and decoding of scRNA-seq data (reduce information Loss)

e GVAE Model

o Accuracy of encoding and decoding of spatial transcriptomics data (reduce information

loss)
e Joint Model

o Accuracy of latent space mapping between scRNA-seq and spatial transcriptomics data

(learning associations)
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Validation

Important to verify our model on new, unseen data.

e VAE Model
o Accuracy of encoding and decoding of scRNA-seq data (reduce information Loss)
e GVAE Model

o Accuracy of encoding and decoding of spatial transcriptomics data (reduce information

loss)
e Joint Model

o Accuracy of latent space mapping between scRNA-seq and spatial transcriptomics data
(learning associations)
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Minimize Information Loss

Encoder Decoder

High Dim Reconstructed
Data Data



Encoder /\
=
Y
< \ g
Important ) g.
Feat 3
b [«]
e

Decoder \”/

38



High Dim Data
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Image-Based Spatial Transcriptomics Single-Cell RNA Sequencing
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Deliverables

1. Fully functional VAE and VGAE pipeline with a map function between
two latent spaces that passes our validation methods, including
o Successfully reconstructing missing genes for image-based spatial
transcriptomics
o Achieve acceptable accuracy for predicting on validation dataset

2. Publishing codebase up to open source standard
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Understanding
cellular composition
provide powerful
insights into
treatment of disease
and cancer




Thank you!



Appendix



How Does Immunotherapy Work?

Tumor cells bind to T-cells Immunotherapy drugs can block
to deactivate them tumor cells from deactivating T-cells

L

ko)
e
©
o
]
123
»
°
T
2
#
|
-

T-cell Tumor T-cell Drug Tumor

54



DNA and proteins

RNA

folding
ﬁ ——+

protein
amino acid chain

Protein Synthesis

Determines cellular
interactions and
biochemical processes
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Producing spatial transcriptomics data
Another way we can study the RNA molecules inside the cells is by spatial
transcriptomics.

In addition to producing genetic data, just like sequential RNA data generation method,

spatial transcriptomics also provides insight into the spatial information of cells (x and y

COO rd N ates Of ce l-I-S) Barcecing & Sequencing Data visualization

Sample prep Imaging

library construction
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Visium Spatial Gene

Expression Slide

Capture Area with
~5,000 barcoded sports

Visium Gene Expression
barcoded spots
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SEMI-SUPERVISED CLASSIFICATION WITH

Variational Graph Auto-Encoders GRAPH CONVOLUTIONAL NETWORKS
Thomas N. Kipf Max Welling
University of Amsterdam University of Amsterdam
Thomas N. Kipf Max Welling T.N.KipfQuva.nl Canadian Institute for Advanced Research (CIFAR)
University of Amsterdam University of Amsterdam

M.Welling@uva.nl
T.N.Kipf@uva.nl Canadian Institute for Advanced Research (CIFAR)

M.Welling@uva.nl

e Variational autoencoders et
o Encodes high dimensional data into lower-dimensional
latent space.
o Reconstruct original data by decoding latent space back

into full-dimensional data
e Graph CNNs

o Nodes contain vector data

o  Graph to contain relationship of each node to its neighbors

M
Hm LTI

e Graph variational autoencoder can encode the

data of an adjacency matrix of cellular data
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SEDR: paper + code

First step of our project

e Variational graph autoencoder to
reconstruct adjacency matrix for spatial
transcriptomics data

e  Open source github repo with results on

various spatial transcriptomics datasets

SEDR (spatial embedded deep representation) learns a low-dimensional latent representation of gene expression
embedded with spatial information for spatial transcriptomics analysis. SEDR method consists of two main
components, a deep autoencoder network for learning a gene representation, and a variational graph autoencoder
network for embedding the spatial information. SEDR has been applied on the 10x Genomics Visium spatial
transcriptomics dataset as well as Stereo-seq dataset, and demonstrated its ability to achieve better
representation for various follow-up analysis tasks including clustering, visualization, trajectory inference and
batch effect correction.

Adjacency matrix / Reconstruction /

Neighborhood graph

Latent

3 Reconstruction X*
representation Z

Clustering




Ann-data

Both sequence and iBST data
are stored in this format.
Helps us understand what is
stored with the data and how

to parse it
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